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Jamming transition in a cellular automaton model for traffic flow
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The cellular automaton model for traffic flow exhibits a jamming transition from a free-flow phase to a
congested phase. In the deterministic case this transition corresponds to a critical point with diverging corre-
lation length. In the presence of noise, however, no consistent picture has emerged up to now. We present data
from numerical simulations that suggest the absence of critical behavior. The transition of the deterministic
case is smeared out and one only observes the remnants of the critical $a083-651X98)03202-4

PACS numbegps): 05.50+q, 02.50.Ey, 89.40:k

[. INTRODUCTION —p)p whereas for high densities-1p<1 one hasJ(p)

=(1-p)(1-p).

The cellular automator{CA) approach to traffic flow Although the model cannot be solved exactly for arbitrary
theory[1] has attracted much interest in recent ye@ee, parameter values, two limits of the model can be treated
e.g.,[2]). Compared to the earlier attempts in modeling traf-analytically. First is the casgy,,—=1, which is solved exactly
fic flow (see, e.g.[2—5] and references thergilCA models ~ With improved mean field methods,9]. Here the funda-
can be used very efficiently for computer simulations. Thismental diagram is symmetric due to particle-hole symmetry.
makes it possible to perform real time simulations even fofConsidering larger maximum velocitieg,,>2 one can ob-
very large network§6,7]. Due to the relevance of these mod- tain s'olu'tlons only in the deterministic limit=0 where the
els for applications it is important to understand the underflow is given by
lying physics thoroughly.

The cellular automaton model of Nagel and Schrecken-
berg (NS mode) [1] provides a simple but quite realistic
description of traffic flow. The road is divided intocells so )
that the model is discrete in space and time. Each cell calf! the free flow regime wheré(p) =pvmay all cars propa-
either be empty or occupied by one Nfcarsj=1, ... N gate W|th maximum velocity whereas in the jammed phase
with velocitiesv;=0, ... Vmax- Umax IS @assumed to be the f[he ﬂ.OW IS I!mlted by the ”“mbef of empty c_ells. These lim-
same for all the cars. The update is divided into four steps',ts will be dlscu_s_sed further in the later sections. .
which are appliedn parallel to all cars. The first stepRL)is Such a transition from a free flow regime at low densmes_
an acceleration step. The velocities of each carj not al- to a congested flovx{ regime where start and stop waves domi-

i ] ) , ; nate the dynamics is typical for traffic flow. Several attempts
ready propagating with the maximum velo_cttxm are IN-  have been made to explain the nature of this transition in the
creased by one. The second st&®]is designed to avoid A model[10-15. It seems, however, that no consensus has
accidents. If a car had; empty cells in front of it and its peen reached yet. Here we present results of an extensive
velocity [after step R1)] exceeddd; the velocity is reduced numerical investigation of the parameter dependence of the
to d;. Up to now the dynamics has been completely deter-
ministic. Noise is introduced via the randomization step

J(p)=min(pv may, 1= p). (1)

(R3). Here the velocities of moving carg;&=1) are de- 09 ' ' ' p=0 —
creased by one with probabilitg. The steps R1)-(R3) 08 g;}jg T
give the new velocity; for each caj. In the last step of the 07 | p=34 -
update procedure the positioxsof the cars are shifted hy; 06 | 1
cells (R4) tox;+v;. We consider here only periodic bound-
ary conditions. Thus the model contains three parameters: , | 05T ’
the maximum velocity ,.x, the probability for brakingp, o4 .
and the average densips~=N/L. 03 L

A basic feature of traffic models is the relation between
density p and the average flow=pv (fundamental dia- i S —
gram wherev = (1/N) =L v; is the average velocity. Fig- erg T T TN
ure 1 shows the fundamental diagram #y,,=5 and differ- 0 : : : —
ent values ofp. One observes two effects as the ngsés ° o2 o4 P o8 o8
increased, namely, a decrease of the flow and a shift of the
maximum towards smaller densities. In the low-density limit  FIG. 1. Fundamental diagram for different values pf
p<<1 one always finds free flow behavior wiltfp) = (v max  (Vmax=5).
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transition in the NS model. We examine several quantities 300.0 .
that give information about the locatigny and the nature of

the phase transition. t:ggggg p=0.00, v, =5
The outline of the paper is as follows: in the next section ----- L=10000
we discuss the relaxation into the steady state. Section Ill is 2000 t=gggg

devoted to measurements of an order parameter. Section I\
shows the behavior of the spatial correlation function. Our
results are discussed in the final section. up)

Il. RELAXATION 1000 -

A characteristic feature of a second order phase transitior
is the divergence of the relaxation time at the transition
point. For technical reasons Gsa and Kerisz [13] made
no direct measurements of the relaxation time, but used the 0.0 : :

. . . . 0.150 0.160 0.170 0.180
following approach: starting from a random configuration of p

cars with velocityv;=0 the average velocityo_(t) is mea-

sured at each time stefp For t—o the system reaches a G, 2. Relaxation parameter near the transition density for dif-
stationary state with average velocity ..). The relaxation ferent system sizew{,,,=5,p=0).
time is characterized by the paraméit8]

Fig. 3. This effect is not shown ifil3]. One can think that it
I — — emerges from inaccurate measurements or finite size effects,
™ fo [minv* (1), (v )} =(v (D) ]dt @ but the negative values are a consequence of the definition
(2). If we look at the time evolution ofv (t))/{v..) we see
v* (t) denotes the average velocity in the acceleration phasge reason for this unpleasent feat(Feg. 4): for p>p, the
t—0 for low vehicle densityy— 0. Because the vehicles do system gets temporarily into states that have a higher average
not interact with each o_theu'* (t).=(1—p)t holds in thls velocity than the stationary state such that(t))>(v.)
regime. Thus the relaxation time is obtained by summing ug,q|qs within this time interval. This overreaction is a conse-
the deviations of the average veloc{ty (t)) from the values  quence of the relaxation mechanism, which can be divided
of a system with one single vehicle that can move withoutinto two phases fop>0. Within the first few time steps
interactions with other carsp(~0). One finds a maximum small clusters that occur in the initial configuration vanish.
of the relaxation parameter near, thetlow the density of  The second phase is characterized by the growth of surviving
maximum flow forp=0.25 andv =5 (see[13]). jams. More and more cars get trapped into large jams and
Within this investigation we extended the set of brakingtherefore the average flow decreases to its stationary value.
parametersg=0,...,0.75) in order to study the parameter This decrease causes negative values af large densities.
dependence of the maximum af We took into account Finally one should note that Eq2) can only be inter-
system sizes up tb =30 000 where the positiop. of the  preted as a relaxation time for a purely exponential decay,
maximum of = becomes size independent. The transition<v—w>_<U—(t)>oce—t/f_ Figure 4 shows, however, that this is
density is given byp. of the largest system we took into nqt the case fop>p., where one even finds a nonmono-

account. o tonic relaxational behavior. In order to get a clear picture of
The results forp=0 andp=0.25 are shown in Figs. 2

and 3. A comparison op. with the density of maximum
flow p(Qgmay Shows smaller values of the transition densities

. o——o L.=30000
p. for all values ofp taken into account. Only fgp=0 the 1500 | o---o L=20000 p=025,v, =5 |
transition densityp. coincides with p(Qqmna0- Taking the o tf&%%o
magnitude ofr as a characteristic value for the relaxation e v L= 2000

time one can estimate the dynamical exponent. Furthermore 100.0
the scaling behavior of the widiin(L) and heightr,(L) of

the peak has been taken into account, ()
50.0

mm(L)xL?,  o(L)sL ™. ()
We find z=0.28 andv=5.7 for p=0.5 andz=0.36 andv 00 -
=6.8 for p=0.25. For the deterministic cage=0 the nu-
merical estimates for the critical exponents are 0.53
+0.04 andv=2.01+0.05. Note that the peaks are not sym- 50.0
metric so that it is difficult to determine its width. Comparing 0.04 0.16
our data with[13] two facts have to be mentioned. First, our p

results forp=0.25 are completely different from the expo-
nents obtained in13]. The second remarkable point is the  FIG. 3. Relaxation parameter near the transition density for a
occurrence of negative values for the relaxation tirfgee  higher value of the braking probability f,.,=5,p=0.25).
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FIG. 5. Order parameter for the deterministic model,4
=1,2). Below the transition density vanishes exactly.

. . . . . . .
200 400 600 800 1000 1200 1400
time t

behavior of the order parameter qualitatively changes in the
FIG. 4. Time dependence of the average velocity. After a fewvicinity of the transition density. Within this regian decays
time steps the average velocity reaches its absolute maximum. exponentially as a function gi. Assumingm is a possible
choice for the order parameter this implies the absence of
the nature of the transition one should therefore examineriticality in the nondeterministic case. Figure 6 shows that
various quantities. the order parameter does not exhibit a sharp transition. Al-
though it becomes rather small for small densities it is still
Ill. ORDER PARAMETER different from zero. The situation is quite similar to the be-
havior of the order parameter in finite systefis]. The
For a proper description of the transition one should in+ransition is smeared out by the noise and the transition den-
troduce an order parameter that has a qualitatively differendity is shifted towards smaller values. In order to have a
behavior within the two phases. A first candidate would begyitable criterion for the determination of the transition den-
the analog of the magnetization in the Ising model, i.e., thesjty we analyzed the scaling behavior of the order parameter
number of cars. However, since this quantity is conserved ifyear the transition densipy, . Figure 7 shows that one gets a

the NS model it cannot serve as an order parameter. Thergite reasonable data collapse using the scaling form
fore the density of nearest-neighbor pairs,

1L

=] 4 m(p)=II(p)m(p+Ap). (6)

m niNi 11,

with n;=0 for an empty cell and; = 1 for a cell occupied by 11(P) is a scaling factor and p. is the shift of the transition
a car(irrespective of its velocity is the simplest choice of a density compared to the deterministic val@&:. The values
local quantity with a nontrivial behavior at the transition den-
sity. Taking into account the braking rul&®2)m gives the

1 T T T T T T T T T

density of those cars with velocity O that had to brake due to o Vp=2.p=050 |
the next car ahead. Although the order parameter introduce 09 r S
in [10] is defined as a time average it shows quite similar o8 " . yé’(} 1
behavior. For large time periods it measures the densities o o7 F o . s g
cars with velocity 0[16]. Vilar and de Souz#10] only in- P ) &&& i
vestigated the deterministic cape=0 for which their order (o) 0&&
parameter is identical to ours, but also in the presence o oS 4 i
noise the values differ only slightly. First we will discuss the 04 - .
behavior of the order parameter in the case0O (Fig. 5. 03 4
Below the transition density, 02 b i
1 0.1 1
Pc= 5 0 ! !

= i K
Umaxt 1 0 04-02 03 04 05 06 07 08 09 1

the order parameter vanishes because every car has at least

Umax €Mpty sites in front and propagates with,,. Within FIG. 6. Behavior of the order parameter for a finite braking
the jammed phase the flow is limited by the number of emptyprobability. It does not vanish exactly fgy<p. but converges
cells and also stopped cars occur. In the presence of noise thmoothly to zero even for small values of the braking probablity
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FIG. 7. Scaling-plot of the order parameter. In the vicinity of the
transition density one gets a reasonable data collapse. The densi
shift determines the transition density for a given

of the transition densities are shown in Fig. 8. These result:
are in good agreement with the results obtained from the

measurement of.

0.2
0.15
IV. SPATIAL CORRELATIONS o1
A striking feature of second order phase transitions is the &x o005
occurrence of a diverging length scale at criticality and a 0
-0.05
0.4 T T T T T 01
0.35 F Vinax= 2 P(OUmax) © 015 ' 1 I I I
T ¢ © ° Pe + 0 5 10 15 20 25 30
0.3 | + © o o r
0.25 | * + . ¢ ¢
p 02 | + + R FIG. 9. Correlation function in the vicinity of the phase transi-
015 F tion for the deterministic limit. Ajp=p. the amplitude is indepen-
o1l dent of the distance.
0.05 . : . .
. . . . . corresponding algebraic decay of the correlation function.
0.3 ' ' ' v _3' (G . Using lattice gas variables the density-density correlation
e e P + function is defined by
+ © >
0z | . ° o 1t
M ° G(r)==2, mni.,—p2. )
o] 0.15 | + . i=1
+
0.1 - Again it is very instructive to consider the deterministic case
0.05 | (p=0) first. In the vicinity of the transition density one
oberves a decay of the amplitude®(r) for larger values of
02 ’ * ’ ’ ‘ the distance between the sit€sg. 9). Precisely ap., how-
Vinax= 5 p(qf"agz ° ever, the correlation function is given by
015 ¢
<
LN pe—pZ  forr=0 modvmact1)
+ o _ .
p o O1f LD GRS G(r)=1 —p2 otherwise, 8
+ ©
¢
0.05 o
because there are exactly,,, empty sites in front of each
. . . car. Considering small, but finite, valuesmthe correlation
o, o1 02 03 0.4 05 function has the same structure as in the deterministic case,
p but the amplitude decays exponentially for all valuespof

(Fig. 10. The decay of the amplitude determines the corre-

FIG. 8. Comparison between transition density and density ofation length for a given pair off(,p), which is finite for all

maximum flow.

densities in the presence of noise. The maximal value of the
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FIG. 12. Noise dependence &f,,, for different maximum ve-

locities. Independent of the maximum veIocﬂMa)g(p%l/\/ﬁ holds
in the limit p—0.

-0.05
-0.1

-0.15

Thereforeé,,,e<1/\/p for smallp. This exponent seems to be
independent ob ,,, although the particle-hole symmetry is
broken forv,,c>1. If one considers larger values pf the
correlation length does not give the relevant length scale,
which is then determined by the size distribution of jams. A
numerical analysis of this limit is quite difficult and has to be
referred to future work.
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0 5 1 5 20 25 %0 Our results suggest a consistent picture of the jamming
transition in the NS CA. Measurements of the order param-
eter and the correlation function show that critical behavior
‘only occurs in the deterministic limit where the transition
density is given byp.=(vmaxt1) ! (see alsd10,19). The
presence of any noise destroys long-range correlations. The
behavior is analogous to a second order phase transition in
finite systems[17]. We have, however, checked carefully
that our results are not affected by finite-size effects and are

Ema—p Y2 (9)  solely due to the presence of noise.
Analogous behavior is also found in the Ising chain in a

In fact, this picture can be confirmed analytically fgf,,=1  transverse field20]. The transverse field® is the control
[18]. Using the results of8] one obtainst, L =In[(1+p)/  parameter and corresponds to the dengity the NS model
(1- \/B)] for the correlation length én. at p=1/2.  whereas the temperatufiecorresponds to the noise param-
eter p. This correspondence can be used to predict scaling
laws. These predictions are currently under investigation and

V. DISCUSSION AND SUMMARY

FIG. 10. Correlation function in the presence of noise. The am
plitude of the correlation function decays exponentially for all val-
ues ofp.

correlation length¢,,,., determines the transition density for
small values ofp (Fig. 11). Numerically we find(Fig. 12

1" T T T T T T T T T T

ol v s T p= 1128 vom | results will be published elsewhere. .
max p=1/32 ra—i We found qualitatively the same behavior of the relax-
°T ° * p=1/16 e ation parameter as shown i3], but some important new
8r s 7 features have been observed. An important result is the oc-
7r z e+, @ 1 currence of negative values of which is a consequence of
E(p) 6 . . =0 . . th_e _relaxatlion mec_hanism beyond' the transition densit.y:
s z e = s _ W|th'|n. t'he first few time steps small jams that are present in
oL :_= 8 "ag =14 the initial con_dmon die out. The second phase is (_Jloml_nated
.l L Ee e “og ) by the formation of large jams. Thus at a certain time inter-
g 82«57 L IR val the average flow is systematically larger than the station-
2g 8 <~ T ary value, which causes negative contributions at that time.
e Consequently one has to question whethejives meaning-
024 026 028 03 032 034 036 038 04 042 . . .
P ful results concerning the relaxation time or not.

The order parameter does not vanish exactly, but the tran-
FIG. 11. Density dependence of the correlation length in thesition density could be determined from the scaling behavior.
vicinity of the transition density. This suggests that the system is not critical in a strict sense.
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Measurements of the density-density correlation functiorare different. Correlations obviously favor states with higher
and the correlation length confirm this picture. We find aflow (see, e.g., Figs. 9 and 10, which show that occupancies
finite correlation length in the presence of noige=0). The  of cells in front of a car are suppressed, which is the gener-
maximum correlation length diverges in the deterministicalization of the particle-hole attraction observed[8] for
limit like 1/\/p for all values ofv yax We investigated €max v ma=1). Therefore one should expect that the state with the
=2,3,5). For the casen,=1 this result can also be con- strongest correlations is also the state with the highest flow,
firmed by analytical calculations. as in the deterministic case. Therefore it would be rather
Our conclusions have to be compared with those of othegurprising if the system exhibits a genuine second order
investigations where signals of a second order transition alsphase transition with diverging correlation length @t

in nondeterministic cases have been found. From our poim&p(qmax)_

of view these results are either a consequence of a specigf conclusion, we found the absence of criticality in the NS
limit considered or the methods chosen. Nagel and Paczuskiodel in the presence of noise. For finitehe second order
[12] showed the existence of self-organized critical behaviotransition of the deterministic case is smeared out, similar to
for the outflow region of a large jam in the cruise-control the situation of a second order transition in a finite system.
limit. They found a scale-invariant size distribution of jams Here this effect is caused by the presence of nqise). For
from measurements far downstream of the megajam. In thigsmall values ofp one finds an ordering transition close to
region most of the cars propagate without any fluctuations, —1/(y . ..+1). Larger values of the noige favor the for-
such that this limit is also an example for scale invariance ir}nation of jams and a tendency to phase Separation occurs
deterministic flow. Very recently an investigation of the (see alsd14,15,27). We therefore are currently investigat-
probabilistic version of the NS model has been performedng the limitp— 1 more carefully. The results are planned to
[15] and it has been argued that at the jamming transitiothe presented in a future publication.

critical behavior occurs also for the nondeterministic cases.

However, the order parameter introduced 1%] also does

not vanish exactly below the transition density. All the data ACKNOWLEDGMENTS

presented if15] are consistent with our interpretation of the

nature of the transition. In contrast to the view[db] we Part of this work has been performed within the research
expect true phase separation only in the lipyt 1. program of the SFB 34(Koln-Aachen-Jlich). We thank D.

Another indication for the absence of critical behavior is theChowdhury, F. Igia and J. Kertez for valuable discussions
well-established factsee, e.g.[13] and Fig. 8 that the den- and the HLRZ at the Forschungszentrurficlhufor generous
sity of maximum flowp(gma9 and the transition density.  allocation of computing time on the Intel Paragon XP/S 10.
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