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Jamming transition in a cellular automaton model for traffic flow

B. Eisenbla¨tter,1 L. Santen,2 A. Schadschneider,2 M. Schreckenberg1
1Fachbereich 10, Gerhard-Mercator-Universita¨t Duisburg, 47048 Duisburg, Germany
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The cellular automaton model for traffic flow exhibits a jamming transition from a free-flow phase to a
congested phase. In the deterministic case this transition corresponds to a critical point with diverging corre-
lation length. In the presence of noise, however, no consistent picture has emerged up to now. We present data
from numerical simulations that suggest the absence of critical behavior. The transition of the deterministic
case is smeared out and one only observes the remnants of the critical point.@S1063-651X~98!03202-4#

PACS number~s!: 05.50.1q, 02.50.Ey, 89.40.1k
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I. INTRODUCTION

The cellular automaton~CA! approach to traffic flow
theory @1# has attracted much interest in recent years~see,
e.g.,@2#!. Compared to the earlier attempts in modeling tr
fic flow ~see, e.g.,@2–5# and references therein! CA models
can be used very efficiently for computer simulations. T
makes it possible to perform real time simulations even
very large networks@6,7#. Due to the relevance of these mo
els for applications it is important to understand the und
lying physics thoroughly.

The cellular automaton model of Nagel and Schreck
berg ~NS model! @1# provides a simple but quite realisti
description of traffic flow. The road is divided intoL cells so
that the model is discrete in space and time. Each cell
either be empty or occupied by one ofN cars j 51, . . . ,N
with velocities v j50, . . . ,vmax. vmax is assumed to be th
same for all the cars. The update is divided into four ste
which are appliedin parallel to all cars. The first step (R1)is
an acceleration step. The velocitiesv j of each carj not al-
ready propagating with the maximum velocityvmax are in-
creased by one. The second step (R2)is designed to avoid
accidents. If a car hasdj empty cells in front of it and its
velocity @after step (R1)# exceedsdj the velocity is reduced
to dj . Up to now the dynamics has been completely de
ministic. Noise is introduced via the randomization st
(R3). Here the velocities of moving cars (v j>1) are de-
creased by one with probabilityp. The steps (R1) – (R3)
give the new velocityv j for each carj . In the last step of the
update procedure the positionsxj of the cars are shifted byv j

cells (R4) to xj1v j . We consider here only periodic bound
ary conditions. Thus the model contains three paramet
the maximum velocityvmax, the probability for brakingp,
and the average densityr5N/L.

A basic feature of traffic models is the relation betwe
density r and the average flowJ5r v̄ ~fundamental dia-
gram! where v̄ 5 (1/N) ( j 51

N v j is the average velocity. Fig
ure 1 shows the fundamental diagram forvmax55 and differ-
ent values ofp. One observes two effects as the noisep is
increased, namely, a decrease of the flow and a shift of
maximum towards smaller densities. In the low-density lim
r!1 one always finds free flow behavior withJ(r).(vmax
571063-651X/98/57~2!/1309~6!/$15.00
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2p)r whereas for high densities 12r!1 one hasJ(r)
.(12p)(12r).

Although the model cannot be solved exactly for arbitra
parameter values, two limits of the model can be trea
analytically. First is the casevmax51, which is solved exactly
with improved mean field methods@8,9#. Here the funda-
mental diagram is symmetric due to particle-hole symme
Considering larger maximum velocitiesvmax>2 one can ob-
tain solutions only in the deterministic limitp50 where the
flow is given by

J~r!5min~rvmax,12r!. ~1!

In the free flow regime whereJ(r)5rvmax all cars propa-
gate with maximum velocity whereas in the jammed pha
the flow is limited by the number of empty cells. These lim
its will be discussed further in the later sections.

Such a transition from a free flow regime at low densit
to a congested flow regime where start and stop waves do
nate the dynamics is typical for traffic flow. Several attem
have been made to explain the nature of this transition in
CA model@10–15#. It seems, however, that no consensus h
been reached yet. Here we present results of an exten
numerical investigation of the parameter dependence of

FIG. 1. Fundamental diagram for different values ofp
(vmax55).
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1310 57B. EISENBLÄTTER et al.
transition in the NS model. We examine several quanti
that give information about the locationrc and the nature of
the phase transition.

The outline of the paper is as follows: in the next sect
we discuss the relaxation into the steady state. Section I
devoted to measurements of an order parameter. Sectio
shows the behavior of the spatial correlation function. O
results are discussed in the final section.

II. RELAXATION

A characteristic feature of a second order phase trans
is the divergence of the relaxation time at the transit
point. For technical reasons Csa´nyi and Kertész @13# made
no direct measurements of the relaxation time, but used
following approach: starting from a random configuration
cars with velocityv j50 the average velocityv̄ (t) is mea-
sured at each time stept. For t→` the system reaches
stationary state with average velocity^ v̄ `&. The relaxation
time is characterized by the parameter@13#

t5E
0

`

@min$v* ~ t !,^ v̄ `&%2^ v̄ ~ t !&#dt. ~2!

v* (t) denotes the average velocity in the acceleration ph
t→0 for low vehicle densityr→0. Because the vehicles d
not interact with each other,v* (t)5(12p)t holds in this
regime. Thus the relaxation time is obtained by summing
the deviations of the average velocity^ v̄ (t)& from the values
of a system with one single vehicle that can move with
interactions with other cars (r→0). One finds a maximum
of the relaxation parameter near, butbelow, the density of
maximum flow forp50.25 andvmax55 ~see@13#!.

Within this investigation we extended the set of braki
parameters (p50, . . . ,0.75) in order to study the paramet
dependence of the maximum oft. We took into account
system sizes up toL530 000 where the positionrc of the
maximum of t becomes size independent. The transit
density is given byrc of the largest system we took int
account.

The results forp50 and p50.25 are shown in Figs. 2
and 3. A comparison ofrc with the density of maximum
flow r(qmax) shows smaller values of the transition densit
rc for all values ofp taken into account. Only forp50 the
transition densityrc coincides with r(qmax). Taking the
magnitude oft as a characteristic value for the relaxati
time one can estimate the dynamical exponent. Furtherm
the scaling behavior of the widths(L) and heighttm(L) of
the peak has been taken into account,

tm~L !}Lz, s~L !}L21/n. ~3!

We find z50.28 andn55.7 for p50.5 andz50.36 andn
56.8 for p50.25. For the deterministic casep50 the nu-
merical estimates for the critical exponents arez50.53
60.04 andn52.0160.05. Note that the peaks are not sym
metric so that it is difficult to determine its width. Comparin
our data with@13# two facts have to be mentioned. First, o
results forp50.25 are completely different from the expo
nents obtained in@13#. The second remarkable point is th
occurrence of negative values for the relaxation times~see
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Fig. 3!. This effect is not shown in@13#. One can think that it
emerges from inaccurate measurements or finite size effe
but the negative values are a consequence of the defin
~2!. If we look at the time evolution of̂ v̄ (t)&/^ v̄ `& we see
the reason for this unpleasent feature~Fig. 4!: for r.rc the
system gets temporarily into states that have a higher ave
velocity than the stationary state such that^ v̄ (t)&.^ v̄ `&
holds within this time interval. This overreaction is a cons
quence of the relaxation mechanism, which can be divid
into two phases forp.0. Within the first few time steps
small clusters that occur in the initial configuration vanis
The second phase is characterized by the growth of surviv
jams. More and more cars get trapped into large jams
therefore the average flow decreases to its stationary va
This decrease causes negative values oft at large densities.

Finally one should note that Eq.~2! can only be inter-
preted as a relaxation time for a purely exponential dec

^ v̄ `&2^ v̄ (t)&}e2t/t. Figure 4 shows, however, that this
not the case forr.rc , where one even finds a nonmon
tonic relaxational behavior. In order to get a clear picture

FIG. 2. Relaxation parameter near the transition density for
ferent system sizes (vmax55,p50).

FIG. 3. Relaxation parameter near the transition density fo
higher value of the braking probability (vmax55,p50.25).
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57 1311JAMMING TRANSITION IN A CELLULAR AUTOMATO N . . .
the nature of the transition one should therefore exam
various quantities.

III. ORDER PARAMETER

For a proper description of the transition one should i
troduce an order parameter that has a qualitatively differ
behavior within the two phases. A first candidate would
the analog of the magnetization in the Ising model, i.e., t
number of cars. However, since this quantity is conserved
the NS model it cannot serve as an order parameter. Th
fore the density of nearest-neighbor pairs,

m5
1

L(
i 51

L

nini 11 , ~4!

with ni50 for an empty cell andni51 for a cell occupied by
a car~irrespective of its velocity!, is the simplest choice of a
local quantity with a nontrivial behavior at the transition den
sity. Taking into account the braking rule (R2)m gives the
density of those cars with velocity 0 that had to brake due
the next car ahead. Although the order parameter introdu
in @10# is defined as a time average it shows quite simil
behavior. For large time periods it measures the densities
cars with velocity 0@16#. Vilar and de Souza@10# only in-
vestigated the deterministic casep50 for which their order
parameter is identical to ours, but also in the presence
noise the values differ only slightly. First we will discuss th
behavior of the order parameter in the casep50 ~Fig. 5!.
Below the transition density,

rc5
1

vmax11
, ~5!

the order parameter vanishes because every car has at
vmax empty sites in front and propagates withvmax. Within
the jammed phase the flow is limited by the number of emp
cells and also stopped cars occur. In the presence of noise

FIG. 4. Time dependence of the average velocity. After a fe
time steps the average velocity reaches its absolute maximum.
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behavior of the order parameter qualitatively changes in
vicinity of the transition density. Within this regionm decays
exponentially as a function ofr. Assumingm is a possible
choice for the order parameter this implies the absence
criticality in the nondeterministic case. Figure 6 shows th
the order parameter does not exhibit a sharp transition.
though it becomes rather small for small densities it is s
different from zero. The situation is quite similar to the b
havior of the order parameter in finite systems@17#. The
transition is smeared out by the noise and the transition d
sity is shifted towards smaller values. In order to have
suitable criterion for the determination of the transition de
sity, we analyzed the scaling behavior of the order param
near the transition densityrc . Figure 7 shows that one gets
quite reasonable data collapse using the scaling form

m̄~r!5P~p!m~r1Drc!. ~6!

P(p) is a scaling factor andDrc is the shift of the transition
density compared to the deterministic value~5!. The values

FIG. 5. Order parameter for the deterministic model (vmax

51,2). Below the transition densitym vanishes exactly.

FIG. 6. Behavior of the order parameter for a finite braki
probability. It does not vanish exactly forr,rc but converges
smoothly to zero even for small values of the braking probabilityp.
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1312 57B. EISENBLÄTTER et al.
of the transition densities are shown in Fig. 8. These resu
are in good agreement with the results obtained from th
measurement oft.

IV. SPATIAL CORRELATIONS

A striking feature of second order phase transitions is th
occurrence of a diverging length scale at criticality and

FIG. 7. Scaling-plot of the order parameter. In the vicinity of the
transition density one gets a reasonable data collapse. The den
shift determines the transition density for a givenp.

FIG. 8. Comparison between transition density and density
maximum flow.
ts
e

e
a

corresponding algebraic decay of the correlation functi
Using lattice gas variables the density-density correlat
function is defined by

G~r !5
1

L(
i 51

L

nini 1r2r2. ~7!

Again it is very instructive to consider the deterministic ca
(p50) first. In the vicinity of the transition density on
oberves a decay of the amplitude ofG(r ) for larger values of
the distance between the sites~Fig. 9!. Precisely atrc , how-
ever, the correlation function is given by

G~r !5H rc2rc
2 for r[0 mod~vmax11!

2rc
2 otherwise, ~8!

because there are exactlyvmax empty sites in front of each
car. Considering small, but finite, values ofp the correlation
function has the same structure as in the deterministic c
but the amplitude decays exponentially for all values ofr
~Fig. 10!. The decay of the amplitude determines the cor
lation length for a given pair of (p,r), which is finite for all
densities in the presence of noise. The maximal value of

sity

f

FIG. 9. Correlation function in the vicinity of the phase trans
tion for the deterministic limit. Atr5rc the amplitude is indepen
dent of the distancer .
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57 1313JAMMING TRANSITION IN A CELLULAR AUTOMATO N . . .
correlation lengthjmax determines the transition density fo
small values ofp ~Fig. 11!. Numerically we find~Fig. 12!

jmax;p21/2. ~9!

In fact, this picture can be confirmed analytically forvmax51
@18#. Using the results of@8# one obtainsjmax

21 5ln[(11Ap)/
(12Ap)] for the correlation length jmax at r51/2.

FIG. 10. Correlation function in the presence of noise. The a
plitude of the correlation function decays exponentially for all v
ues ofr.

FIG. 11. Density dependence of the correlation length in
vicinity of the transition density.
Thereforejmax}1/Ap for smallp. This exponent seems to b
independent ofvmax although the particle-hole symmetry
broken forvmax.1. If one considers larger values ofp, the
correlation length does not give the relevant length sc
which is then determined by the size distribution of jams.
numerical analysis of this limit is quite difficult and has to b
referred to future work.

V. DISCUSSION AND SUMMARY

Our results suggest a consistent picture of the jamm
transition in the NS CA. Measurements of the order para
eter and the correlation function show that critical behav
only occurs in the deterministic limit where the transitio
density is given byrc5(vmax11)21 ~see also@10,19#!. The
presence of any noise destroys long-range correlations.
behavior is analogous to a second order phase transitio
finite systems@17#. We have, however, checked careful
that our results are not affected by finite-size effects and
solely due to the presence of noise.

Analogous behavior is also found in the Ising chain in
transverse field@20#. The transverse fieldG is the control
parameter and corresponds to the densityr in the NS model
whereas the temperatureT corresponds to the noise param
eter p. This correspondence can be used to predict sca
laws. These predictions are currently under investigation
results will be published elsewhere.

We found qualitatively the same behavior of the rela
ation parameter as shown in@13#, but some important new
features have been observed. An important result is the
currence of negative values oft, which is a consequence o
the relaxation mechanism beyond the transition dens
within the first few time steps small jams that are presen
the initial condition die out. The second phase is domina
by the formation of large jams. Thus at a certain time int
val the average flow is systematically larger than the stati
ary value, which causes negative contributions at that ti
Consequently one has to question whethert gives meaning-
ful results concerning the relaxation time or not.

The order parameter does not vanish exactly, but the t
sition density could be determined from the scaling behav
This suggests that the system is not critical in a strict sen

-

e

FIG. 12. Noise dependence ofjmax for different maximum ve-
locities. Independent of the maximum velocityjmax(p);1/Ap holds
in the limit p→0.
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1314 57B. EISENBLÄTTER et al.
Measurements of the density-density correlation funct
and the correlation length confirm this picture. We find
finite correlation length in the presence of noise (p.0). The
maximum correlation length diverges in the determinis
limit like 1/Ap for all values ofvmax we investigated (vmax
52,3,5). For the casevmax51 this result can also be con
firmed by analytical calculations.
Our conclusions have to be compared with those of ot
investigations where signals of a second order transition
in nondeterministic cases have been found. From our p
of view these results are either a consequence of a sp
limit considered or the methods chosen. Nagel and Pacz
@12# showed the existence of self-organized critical behav
for the outflow region of a large jam in the cruise-contr
limit. They found a scale-invariant size distribution of jam
from measurements far downstream of the megajam. In
region most of the cars propagate without any fluctuati
such that this limit is also an example for scale invariance
deterministic flow. Very recently an investigation of th
probabilistic version of the NS model has been perform
@15# and it has been argued that at the jamming transi
critical behavior occurs also for the nondeterministic cas
However, the order parameter introduced in@15# also does
not vanish exactly below the transition density. All the da
presented in@15# are consistent with our interpretation of th
nature of the transition. In contrast to the view of@15# we
expect true phase separation only in the limitp→1.
Another indication for the absence of critical behavior is t
well-established fact~see, e.g.,@13# and Fig. 8! that the den-
sity of maximum flowr(qmax) and the transition densityrc
r.
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are different. Correlations obviously favor states with high
flow ~see, e.g., Figs. 9 and 10, which show that occupan
of cells in front of a car are suppressed, which is the gen
alization of the particle-hole attraction observed in@8# for
vmax51). Therefore one should expect that the state with
strongest correlations is also the state with the highest fl
as in the deterministic case. Therefore it would be rat
surprising if the system exhibits a genuine second or
phase transition with diverging correlation length atrc
Þr(qmax).
In conclusion, we found the absence of criticality in the N
model in the presence of noise. For finitep the second order
transition of the deterministic case is smeared out, simila
the situation of a second order transition in a finite syste
Here this effect is caused by the presence of noise,p.0. For
small values ofp one finds an ordering transition close
rc51/(vmax11). Larger values of the noisep favor the for-
mation of jams and a tendency to phase separation oc
~see also@14,15,21#!. We therefore are currently investiga
ing the limit p→1 more carefully. The results are planned
be presented in a future publication.
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